Chapter 5

5.1 The Language of Mathematics, pages 179-182
5. a) 3 , trinomial b) 1 , monomial c) 4 , polynomial
d) 1 , monomial
6. a) 1 , monomial b) 3 , trinomial c) 1 , monomial
d) 2, binomial
$\begin{array}{lll}\text { 7. a) } 6 x & \text { and }-15 & \text { b) } 7+a+b\end{array}$ c) $3 x-y$ and $4 c^{2}-c d$
8. a) degree 1,2 terms b) degree 2,2 terms
c) degree 2,3 terms
9. a) degree 2,2 terms b) degree 2,3 terms
c) degree 0,1 term
10. a) $2+p$ and $2 x^{2}-y^{2}$
b) $3 b^{2}, 4 s t+t-1$, and $2 x^{2}-y^{2}$
c) b d) $2+p$ and $4 s t+t-1$
$\begin{array}{lll}\text { 11. a) } 2 x-3 & \text { b) } x^{2}-2 x+1 & \text { c) }-x^{2}+3 x-2\end{array}$
12. a) $2 x^{2}+4$ b) $-x^{2}-2 x-4 \quad$ c) 4
13. a)

14. a)

b)

c) $\square \square \square \square \square \square \square$
15. a) Example: $x+2 \quad$ b) Example: $3 x$

c) Example: $9 x^{2}$

d) Example: $x^{2}+x+y+3$

16. a) Example: Both tiles share a common dimension of 1 unit. b) $x+3$
$\begin{array}{lll}\text { 17. a) } 6 x & \text { b) } 2 x+3 & \text { c) } x^{2}+4 x\end{array}$
18. Example: The expression $x^{2}+3 x+2$ is a trinomial of degree 2 .

$\begin{array}{lllll}\text { 19. a) } 2 & \text { b) } 6 & \text { c) } 1 & \text { d) } 2 & \text { e) }-5\end{array}$
20. a) $3 x^{2}-2 x+1$
b) Example: $d^{2}-5 d+2$

21. a) $8+x, x$ represents the unknown number b) $x+5, x$ represents the amount of money c) $w+4, w$ represents the width of the page d) $5 x+2$, x represents the unknown number e) $3 n-21, n$ represents the number of people
22. a) Example: The Riggers scored 5 more than triple the number of goals scored by the Raiders. b) Example: The number of coins remaining from a purse containing 10 coins after an unknown number of coins were removed
23. a) a represents the number of adults and c represents the number of children
b) $\$ 215$
c) $23 a+17 c$
24. $10 a+5 s$, where a represents the number of adults and s represents the number of students.
25. a) $2 w+s \quad$ b) w represents the number of wins and s represents the number of shoot-out losses c) 4 d) 28 e) Two possible records for Team B are: 8 wins, 12 shoot-out losses, and 0 losses in regulation time $(2 \times 8+12=28) ; 10$ wins, 8 shoot-out losses, and 2 losses in regulation time ($2 \times 10+8=28$).
26. a) binomial of degree 1 b) Example: 5 could be the charge per person, 75 could be the cost of renting the room. c) $\$ 825$
27. a) Example: $2 c-w$, where c represents the number of correct answers and w represents the number of wrong answers. b) All 25 questions correct would result in a maximum score of 50 points. All 25 questions wrong would result in a minimum score of -25 .

c) \begin{tabular}{|c|c|c|c|}

\hline | Number |
| :---: |
| Correct | \& | Number |
| :---: |
| Wrong | \& | Number |
| :---: |
| Unanswered | \& Score

\hline 20 \& 5 \& 0 \& 35

\hline 20 \& 4 \& 1 \& 36

\hline 20 \& 3 \& 2 \& 37

\hline 20 \& 2 \& 3 \& 38

\hline 20 \& 1 \& 4 \& 39

\hline 20 \& 0 \& 5 \& 40

\hline
\end{tabular}

28. 2
29. a) $6 x+6$ b) $x+3=2 x \quad$ c) $x+3=2 x$, subtract x from both sides, $3=x$
30. Example: $x z+4 y+3$
31. a) Example: $d=s t$, where d represents distance, s represent speed, and t represents time.

b) | Part of Race | Distance (km) | Speed (km/h) | Time (h) |
| :--- | :---: | :---: | :---: |
| swim | d_{1} | 1.3 | $\frac{d_{1}}{1.3}$ |
| cycle | d_{2} | 28.0 | $\frac{d_{2}}{28}$ |
| run | d_{3} | 12.0 | $\frac{d_{3}}{12}$ |

c) $\frac{d_{1}}{1.3}+\frac{d_{2}}{28}+\frac{d_{3}}{12}$ d) 3.416 h , assuming that Deidra
races at her average pace \quad e) 12.868 h

5.2 Equivalent Expressions, pages 187-189

5. a) coefficient: -3 ; number of variables: 1
b) coefficient: 1 ; number of variables: 1
c) coefficient: 0 ; number of variables: 0
6. a) coefficient: 4; number of variables: 1
b) coefficient: -1 ; number of variables: 3
c) coefficient: -8 ; number of variables: 2
7. a) x^{2} and $x t$ b) $-t s$ and $x t$ c) $3 x$ and $4 t \quad$ d) $-t s$
8. a) $2 a$ and $-7.1 a \quad$ b) $3 m$ and $\frac{4}{3} m$
c) -1.9 and $5 ; 6 p^{2}$ and p^{2}
9. a) $-2 k$ and $104 k$ b) $\frac{1}{2} a b$ and $a b$
c) -5 and $5 ; 13 d^{2}$ and d^{2}
$\begin{array}{llll}\text { 10. a) }-4 x^{2}+4 x & \text { b) }-3 n-1 & \text { c) }-q^{2}-q & \text { d) } c-4\end{array}$
e) $5 h^{2}-h \quad$ f) $-j^{2}+5 j-6$
$\begin{array}{lll}\text { 11. a) }-2 d^{2}-3 d & \text { b) }-y^{2}+3 y & \text { c) } p^{2}+p-2\end{array}$
$\begin{array}{lll}\text { d) } 4 m+2 & \text { e) } 3 q^{2}-4 q & \text { f) }-3 w^{2}+3 w-4\end{array}$
10. B, C, and E
11. Example: Yes. 2 m and 1 m are expressed in the same unit of measurement, so they can be considered like terms. Their sum is 3 m .32 cm and 63 cm are expressed in the same unit of measurement, so they can be considered like terms. Their sum is 95 cm .
12. a) Example: The amount of liquid in a can is reduced by 3 mL . b) Example: The number of coloured markers is 5 more than twice the number of pens.
13. a) Example: $p^{2}+p^{2}-6 p+3 p+5-3$
b) Example: $10 x^{2}-13 x^{2}+x+4 x-10+6$
c) $r^{2}+r^{2}+2 r^{2}-7 q^{2}+5 q^{2}-3 q r$
14. a) $10 d+3$ b) $4 w+18$
15. a)
b) $9 s+4$

16. a) $5 n-700$, where n represents the number of students b) $\$ 550$ c) Example: estimate: 150 ; actual: 141
17. a) $60 n+54$ b) $\$ 174$
c) $60 n+54+\frac{60 n+54}{2} ; 90 n+81$
18. a) $3000+16 b$ b) $\$ 12600$ c) $\$ 21$ d) $\$ 19$
19. a) Raj combined $3 x-5 x$ incorrectly; it should be $-2 x$. He also combined $-8+9$ incorrectly; it should be 1 .
b) $-2 x+1$
20. a) $x+3 x+7+2 x-5$ b) $6 x+2$
21. When $y=w$. Example: Assign a value to x, such as $x=10$. Substitute this value into the two expressions. The first expression becomes $y+13$. The second expression becomes $w+13$. If the two expression are equal, then $y=w$.
22. a)

Wholesale Price (\$)	Expression for Retail Price	Retail Price $\mathbf{(\$)}$
8.00	$8+(0.4)(8)$	11.20
12.00	$12+(0.4)(12)$	16.80
30.00	$30+(0.4)(30)$	42.00
x	$x+0.4 x$	$1.4 x$

b) Example: $x+10+(0.4)(x+10)=x+10+0.4 x+4$

$$
=1.4 x+14
$$

Or multiply 1.4 by x, which yields $1.4 x$, and multiply 1.4 by 10 , which yields 14 .
25. a) $\mathrm{Zip}: 100+2 p$, where p represents the number of posters; Henry: $150+p$, where p represents the number of posters b) Zip: \$350; Henry: \$275 c) Total cost is $\$ 850$. Add Zip's price to Henry's price: $\$ 500+\$ 350=\$ 850$. Or add like terms: $100+2 p+150+p=250+3 p$, and then substitute $p=200$. Simplify to $\$ 850$.

5.3 Adding and Subtracting Polynomials, pages 196-199
 5. C
 6. a) $5 x-7 \quad$ b) $-5 a^{2}-a+2$ c) $10 p$ d) $2 y^{2}+6 y-6$
 7. a) $3 x+4 \quad$ b) $-n+3$ c) $b^{2}-1 \quad$ d) $a^{2}-a-1$
 8. a) $-3 x+1$ b) $x^{2}-2 x-3$

9. a) $x-1$
b) $-2 x^{2}+1$

10. a) $9 x$ b) $-5 d-6 \quad$ c) $2 x^{2}-3 x+5$
11. a) $-3 x+7$ b) $-4 g^{2}+4 g-2.5$ c) $-v^{2}-8 v+1$
12. B
13.

Remove $-2 x^{2}-x$.

$\begin{array}{lll}\text { 14. a) }-3 x-2 & \text { b) }-5 b^{2}-9 b & \text { c) }-3 w+7\end{array}$
d) $-m^{2}+m$
$\begin{array}{lll}\text { 15. a) } 13 c-3 & \text { b) }-4 r^{2}-3 r-6 & \text { c) } 2 y^{2}-7 y\end{array}$
d) $8 j^{2}-4 j+8$
16. a) the perimeter $\begin{array}{ll}\text { b) } 6 x & \text { c) } 30 \text {; Example: The expression }\end{array}$ in part b) was used because it involved fewer steps.
17.

18. a) $399 d+160 ; d$ represents the number of days the backhoe is rented. b) $550 d+160$ c) $949 d+160$ d) 151 d
19. a) $-x+5+3 x+1$ b) A: $(-x+5)-(4 x-3)=-5 x+8$; B: $(3 x+1)-(4 x-3)=-x+4$
20. a) $17 n+2150$ b) $\$ 12350$ c) The expression represents the difference in the cost of printing and the cost of shipping; $13 n+1850$
21. The second line should be $4 p^{2}-p+3-p^{2}-3 p+2$, and the result of $(-p-3 p)$ is not $-3 p$, so the answer should be $3 p^{2}-4 p+5$.
22. a) $10 x-12$ b) $2 a^{2}-a-4$ c) $5 t^{2}-6 t+9$
d) $-2.3 x+0.4$
23. a) $3 x^{2}+5 x-3$

b) $x^{2}-5 x-3$

24. $4 x^{2}+2 x$
25. a) Example: Assume you also pay $\$ 0.12$ for punctuation. For St. Mary's High School, $\mathrm{C}=(25)(0.12)(31)+(25)(0.12)(19)$
b) Example: For St. Mary's High School, $\mathrm{C}=(25)(0.12)(31)+(25)(0.12)(19)+(25)(17.95)$
c) Example: $\mathrm{C}=(25)(17.95)+(25)(0.12)(n)$, where n represents the number of letters.
d) $(3 n+448.75)+(3 n+448.75)=6 n+897.5$
26. a) $\$ 37$ b) $\$ 35$ c) $7 l+5 s+38$, assuming at least one large print and at least one small print.
27. $w+23+w+8+w+23+w+8=4 w+62$
28. a) $\left(-n^{2}+3600 n\right)-\left(-3 n^{2}+8600\right)$
$=2 n^{2}+3600 n-8600$ b) profit; Example: Replacing n with 20 in the expression $2 n^{2}+3600 n-8600$ yields a positive answer of $\$ 64200$.
29. $1004 x$
30. $8 w+142$

Chapter 5 Review, pages 200-201

1. D
2. E
3. D
4. A
5. C
6. B
7. a) 4 terms, polynomial b) 2 terms, binomial
c) 1 term, monomial d) 3 terms, trinomial
8. a) This is a degree 2 polynomial because the term with the highest degree $\left(6 x^{2}\right)$ has a degree of 2 .
b) This is a degree 2 polynomial because the term with the highest degree $(a b)$ has a degree of 2 .
c) This is a degree 1 polynomial because the term with the highest degree (y) has a degree of 1 .
9. a) Example: $3 y-11$ b) Example: $a+2 b-7 c$
c) $m^{2}-4 \quad$ d) 18
10. a)

b)

11. a) $x^{2}-3 x+2$ b) $-2 x^{2}+x \quad$ c) $-3 x+2$
12. a) x represents the number of video games sold and y represents the number of books sold. b) $\$ 104$ c) $7.25 d+5 c$, where d represents the number of DVDs and c represents the number of CDs
13. One term has the variable x; the other does not have the variable x. So, the two terms cannot be like terms.
14. a) coefficient: 8 , variables: x and y, exponent: 2
b) coefficient: -1 , variable: c, exponent: 2
c) There are no coefficients or variables because this term is a constant.
15. a) $3 s$ and $-8 s$ b) $-2 x^{2}$ and $x^{2}, 3 x y$ and $3 x y$
16. Example: Like terms must be identical except for the coefficients. Four sets of examples that contain at least three like terms are:
a) $16 z, x, 2 z,-z, y$ b) $-a b, a, 4 b, 6 a b,-2 b a$
c) $m, m^{2},-m, m^{3}, 6 m \quad$ d) $x y, 4 y x,-11 y x, 10 s^{2},-4 y x$
17. $-x^{2}-3 x+5$

18. a) $4+3 x$

b) $x^{2}+4 x+3$

19. a) $13 a+4$ b) $-2 b^{2}+3 b \quad$ c) $7 c+2$
20. Perimeter $=9 x$

21. a) $20+1.50 n$, where n represents the number of hours renting the locker b) $20+3 n$, where n represents the number of hours renting the tube c) $40+4.5 n$
22. a) $5 x-4,3 x-2$ b) Example: The processes are similar in that the like terms were combined. The processes are different in that one involved addition and the other involved subtraction.
23. Yes. Example: The opposite term of $2 x^{2}$ is $-2 x^{2}$ and the opposite term for $-3 x$ is $3 x$.
24. a) 3 b) $-7+a \quad$ c) $-x^{2}+2 x-4$
25. a) Example: Group together the like terms:
$(3 p-p)+(4 q-5 q)+(-9+2)=2 p-q-7$.
Another method is to change the order of the terms and line up the polynomials vertically. $3 p+4 q-9$

$$
\frac{-p-5 q+2}{2 p-q-7}
$$

b) Example: The first method is preferred because the terms are grouped horizontally.
26. a) $3 p+2$ b) $4 a^{2}-7 a-7$
27.

$-4 t-2$	
$t-4$ $3 t-2$ $t-1$ $2 t+3$ $-t+5$	

28. a) $140+12 n$, where n represents the number of people attending b) Example: Another class decides to spend more on food and refreshments for their party and less on printing, decorations, and awards. Their cost for food is $\$ 15 /$ person and $\$ 100$ for the other items. The sum of the costs for both classes is $(140+12 n)+(100+15 n)=240+27 n$. The difference of the costs is $(140+12 n)-(100+15 n)=40-3 n$.
